Presentation

Wirtinger Holography for Near-eye Displays
SessionThoughts on Display
Event Type
Technical Papers



TimeTuesday, 19 November 201915:18 - 15:39
LocationPlaza Meeting Room P2
DescriptionNear-eye displays using holographic projection are emerging as an exciting display approach for virtual and augmented reality at high-resolution without complex optical setups --- shifting optical complexity to computation. While precise phase modulation hardware is becoming available, phase retrieval algorithms are still in their infancy, and holographic display approaches resort to heuristic encoding methods or iterative methods relying on various relaxations.
In this work, we depart from such existing approximations, and solve the phase retrieval problem directly revisiting complex Wirtinger derivatives. Using Wirtinger derivatives allow us to pose the phase retrieval problem as a quadratic problem which can be minimized with first-order optimization methods. The proposed Wirtinger Holography is flexible and facilitates the use of different loss functions, including learned perceptual losses parametrized by deep neural networks, as well as stochastic optimization methods. We validate this framework by demonstrating holographic reconstructions with an order of magnitude lower error, in simulation and on a experimental hardware prototype.
In this work, we depart from such existing approximations, and solve the phase retrieval problem directly revisiting complex Wirtinger derivatives. Using Wirtinger derivatives allow us to pose the phase retrieval problem as a quadratic problem which can be minimized with first-order optimization methods. The proposed Wirtinger Holography is flexible and facilitates the use of different loss functions, including learned perceptual losses parametrized by deep neural networks, as well as stochastic optimization methods. We validate this framework by demonstrating holographic reconstructions with an order of magnitude lower error, in simulation and on a experimental hardware prototype.