Technical Papers
GradNet: Unsupervised Deep Screened Poisson Reconstruction for Gradient-Domain Rendering
Event Type
Technical Papers
Registration Categories
TimeWednesday, 20 November 20199:00 - 9:26
DescriptionMonte Carlo (MC) methods for light transport simulation are flexible and general but typically suffer from high variance and slow convergence. Gradient-domain rendering alleviates this problem by additionally generating image gradients and reformulating rendering as a screened Poisson image reconstruction problem. To improve the quality and performance of the reconstruction, we propose a novel and practical deep learning based approach in this paper. The core of our approach is a multi-branch auto-encoder, termed GradNet, which end-to-end learns a mapping from a noisy input image and its corresponding image gradients to a high-quality image with low variance. Once trained, our network is fast to evaluate and does not require manual parameter tweaking. Due to the difficulty in preparing ground-truth images for training, we design and train our network in a completely unsupervised manner by learning directly from the input data. This is the first solution incorporating unsupervised deep learning into the gradient-domain rendering framework. The loss function is defined as an energy function including a data fidelity term and a gradient fidelity term. To further reduce the noise of the reconstructed image, the loss function is reinforced by adding a regularizer constructed from selected rendering-specific features. We demonstrate that our method improves the reconstruction quality for a diverse set of scenes, and reconstructing a high-resolution image takes far less than one second on a recent GPU.