Close

Presentation

Technical Papers Fast-Forward
:
OpenSketch: A Richly-Annotated Dataset of Product Design Sketches
Event Type
Technical Papers Fast-Forward
Registration Categories
TimeSunday, 17 November 201919:45 - 19:46
LocationGreat Hall 1&2
DescriptionProduct designers extensively use sketches to create and communicate 3D shapes and thus form an ideal audience for sketch-based modeling, non-photorealistic rendering and sketch filtering. However, sketching requires significant expertise and time, making design sketches a scarce resource for the research community. We introduce OpenSketch, a dataset of product design sketches aimed at offering a rich source of information for a variety of computer-aided design tasks. OpenSketch contains more than 400 sketches representing 12 man-made objects drawn by 7 to 15 product designers of varying expertise. We provided participants with front, side and top views of these objects, and instructed them to draw from two novel perspective viewpoints. This drawing task forces designers to construct the shape from their mental vision rather than directly copy what they see. They achieve this task by employing a variety of sketching techniques and methods not observed in prior datasets. Together with industrial design teachers, we distilled a taxonomy of line types and used it to label each stroke of the 214 sketches drawn from one of the two viewpoints. While some of these lines have long been known in computer graphics, others remain to be reproduced algorithmically or exploited for shape inference. In addition, we also asked participants to produce clean presentation drawings from each of their sketches, resulting in aligned pairs of drawings of different styles. Finally, we registered each sketch to its reference 3D model by annotating sparse correspondences. Our sketches, in combination with provided annotations, form challenging benchmarks for existing algorithms as well as a great source of inspiration for future developments. We illustrate the versatility of our data by using it to test a 3D reconstruction deep network trained on synthetic drawings, as well as to train a filtering network to convert concept sketches into presentation drawings.